(财见2022年11月15日讯)11月6-9日,第31届国际人工智能联合会议-中国会议(IJCAI 2022 China)在深圳坪山燕子湖国际会展中心召开。其中,大会主题论坛《隐私计算与联邦学习》于11月8日在线上线下同步进行。本次论坛邀请了数位隐私计算和联邦学习研究和应用领域的带头人进行特邀演讲,并且邀请被接收论文的作者分享最新的研究成果。

论坛荣誉主席、香港科技大学计算机与工程系讲席教授和前系主任、微众银行首席人工智能官杨强教授发表题为《可信联邦学习》的主题演讲。杨强教授表示,联邦学习是人工智能和隐私计算的重要交集,如何使联邦学习更加安全可信和高效是今后产业和学界关注的重点,可信联邦学习的提出顺应了产业发展的新趋势。开源是可信联邦学习实现普惠的重要路径,在开源平台的支撑下,联邦学习在多个场景涌现出了优秀的应用案例,并且分享了FATE开源社区最新工作进展和未来发展规划。此外,杨强教授还展望了跨平台互联互通、完善联邦学习安全机制等行业未来发展重点,给联邦学习的进一步发展指明了方向。
0 条评论
请「登录」后评论